
AD-A16i 938 FUNCTIONAL TESTING OF LSI/VLSI BASED SYSTEMS WITH Ii
MEASURE OF FAULT COVERAGE(U) STATE UNIV OF NEW YORKC AT

U'CL ALBANY RESEARCH FOUNDATION S Y SU ET AL 0 NOV 83

UNCLASSIFIED DA87-82-K-J@56 F/G 9/2 N

,EEOMOEEEEEE
EIIhEEEEIIIIhEEEEEII

I fllflflflfl..flIIII

.1

1.05
u . 136 2

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

Ih~hII

,-

0 SCIENTIFIC AND TECHNICAL REPORT

FIFTH QUARTERLY STATUS REPORT

Prepared By

Stephen Y.H. Su

Project Director
Dept. of Computer Science
State University of New York

Bingharton, New York 13901

(607)-798-2296 (office)
(607)-798-4802 (secretary)

A. Contractor's name and address:

The Research Foundation of
State University of New York
P.O. Box 9, Albany, New York 12201

F. n~:-.t : , ..-.:£0 -$2 K 105-6

C. Date of Report - November 3, 1983

D. Title: The £. h Quarterly Status Report for the project "Functional
Te.-t: of LSI/\LSI Based Systems with Measure of Fault Coverage"

E. Period (t,%-crcd: July 2S to October 27, 1983
LL.J

C ' .- 'c .':::c:uel Ou'rtcr Cost: $ 4].837.00

Cu-uative Cost to date: $132,627.15

DTIC

E LECTE fNOV 2G 885

8 8 058
T d"Ta 'en L. . been pr 1

dtrbution Is unllmited"

A FUNCTIONAL TESTINC IEMIEOD FOR MICROPflOCESSORS*

by Accession For

NTIS C-A&I
DTIC TAB ,
Unannoonced

Li Shen** JjUji"'ion . _

Stephen Y.H. Su By
-, I Distribution/

Department of Computer Science Availah , C>es

Thomas J. Watson School of Engineering, iA- il:n/0r

Applied Science, and Technology Dist S~cK'i

State University of New York

Binghamton, N.Y. 13901K)

IABSTRACT
This paper presents a method for functional testing of microprocessors.

First, we develop a control fault model at the RTL (Register Transfer Language)

level. Based on this model, we establish testing requirements for control

faults. We prese.:nt three test procedures to Nerify the write and read sequences

and use the write and read sequences to test other instructions in a micro-

processor. By utilizing k-out-of-m codes, we can use fewer tests to cover

more faults, thereby reducing the test generation time.

//

• This work is suppcrted by the U.S. Army Cenmunication Electronics Coiand
under Research Contract No. DAAB 07-82-K-J056.

•* Li Shen is now a visiting schclar in SLITN-Einghartcr., from lustitute of
Computing Technology, Chinese Academy of Sciences, Bzijing, China.

CIDQ~

I. INTRODUCT]ON

The developnent of inttgrated circuit technology has resulted in a wide

ranLe of applications for microprocessors. Testing cf microprocessors is r

difficult problem because of the complexities of microprocessors. The problem

is more serious fcr users due to lack of information on internal implementation

of microprocessora an, other VLSI chips. Over the past few years, several

* methods have been proposed to solve this problem. Thcsc testing techniques

are essentially based on functional level [1-11].

A r~icroprocessor is a type of corplex sequentiLl rachine. The current

- approach is to test microprocescors by instruction execution. Generally,

before executing an instruction-under-test we have to vrite certain data

into some registers, and aftei executing the instruction, read the contents

*[of the registers. Therefore, if the write or the read instruction is faulty,

we may not be able to test the instruction-under-tect. To solve this problem,

Thatte and Abraham [3] have to label instructions and define test order in

detail before testing. However, they do not consider the partial execution

of an instruction. So for instruction decoding fault Ij/l + Ik, it is assumed

* that instead of executing I, both instructions I and Ik are executed toj k

completion. It Is more general and practical to considei partial execution of

an instruction under fault. Our fault model allows this.

Abraham and Parker (6] proposed a simplified fault model. First, one

tests all internal registers, then executes all instruction and data tanipulation

functions.

In this paper, me consider the basic instructions for the %rite and read

register functions as the kernel of a microprocessor. This kernel can be represented

by a sequential machine. Based on the fault model, we use checl:ing experiment

! .:':."'"'" . " , '" < ':' " ". "" "" * ". .. ' - " " "" . ." " "

2

to verify the kernel. Then we use the kernel for testing other instructions.

The control fault model is established at the Register Transfer Language (RTL)

level, since it is convenient to represenit the instruction deccding faults and

other control faults at such a level.

Section II presents a fault model for microprocessors, ermphasizir.g the

control fault modcl defined at the RTL level insteaO of the instruction level.

, In Section III, after examining most existing off-the-shelf microprocessors,

we derive testing requirenents based on different types of operations. In

. Section IV, we define the write and read sequences as the kernel of a nicrc-

processor. Then Section V presents the verificatior, of the write and rend

sequences. Section VI discusses the testing of control faults. Finally,

conclusions are given in Secticn VII.

'SZ

°. .

9'-

II. FAIULT MODEL

The functions of a microprocessor are mainly perfor~ed by instruction

execution. The sequence of operations for an instruction can be descrLbcd

by RTL. We consider that an instruction consists of a series of RTL

statements. The typical statement is defined as

(conditions): D4-f (S , S2 , .p S , "'

where

D -destination

S - Source

f(Sl, S2 , ... , Si, ...)- operation

Destinations and sources may be internal registers of a microprocessor

or external to the microprocessor (i.e., data bus, address bus, etc.). Ve are

only concerned with those internal registers which are cf interest to users, so

we do not consider implied registers such as buffers. For example, data transfer

from memory to memory can be described as DBj 4DI, instead of Buffer+-DP i follo-vcd

by DB-Buffer, where DB denotes the data bus which represents data itT-ut or output

of memory, i,j denote different bus cycles, DBi (read from emory) is ahead of

DB. (write into memory).

After examining most existing off-the-shelf microprocessors, e.g. Intel ,00

and 8086, Zilog 80 and 8000, Motorola 6800 and 68000, the RTL-like operations

can be divided into two classes, transfer operations (class T, D-S), and

arithmetic and logical operations (class A). Class A can be subdivided into

six subclasses based on the combination of destinctions and sources as shown in

Table 1, where the content of flag bits constitute a status register.

• , .~..'s..' . > : >. . . , . •• . -,. .. - -. •. -. . . . • . . , . .,. . ..-.. . - , • . .

Class Type of Expression Operation

Al 14-f (D) BIT SET

BIT P.S ET

BIT CO13TLr2EIr:T

INCREXENT

DECPM3ENT

DECINAL ADJUST

SHIFT

ROTATE

CO!HPLEM.NT

NEGATE

CLEAR

A2 D+-f(D,S) tDDITION

ADDITION IITE CARRY

SUBTRACTION

SUBTRACTION W'ITH BO1.RCW

AND

OR

xOr'

D~-f(S) EXT END SIGN

A3 J,4-f (SS 2) ADDITION, D-S +S2

Df (D, SI 2) ADDITION, D*-D+S +S

A4 D.f(Sl, 2 ,S3) ADDITION, D-S I+S 2+S3

AM Dl D2 -f(DI S) MULTIPLY

DIVIDE

AF Flags+-f (S) BIT TEST

Flags-f (S1 , 2) COMPARE

Flags-f(SlS 2,...) Modifying flags for all

arithmetic and logical instructions

Table 1. RTL-Like Operations

A. A.... kk.

5

Note that the control operations in RTL control statements such as

conditional branch are not listed because we can use Rn. assignment statenicrts

with conditions end expand the PJT description for instructions with locps.

A microprocessor usually can be divided into two sectionf,: the data

processing part and the control part [2,11]. In this paper, we consider faults

in both parts with the emphasis cn the control faults.

A. Data processing faults

(1) Data storage fault (R)/(R)'

This means that the content of register is changed fron (R) to (R)' due

to faults such as stuck-at and pattern sensitive faults.

(2) Data transfer fault -/-'

The fault occurs in the transfer path between the sources and the

destination. This type of fault includes stuck-at, bridging and pattern rensitive

faults.

(3) Data maripulation fault (f)/(f)'

This is the operation execution fault. Under this fault, the operation

f is executed, but the result of operation is wrong.

B. Control faults

This kind of fault involves register decoding faults, instruction deceding

faults and other control faults. A register decoding fault reans missing or

changing the selected register, or selection of an extra register, denoted by

R/4, R/R', and R/R+R' respectively. For instruction decoding faults, we

consider that an instruction can be executed partially. It means missing or

changing the selected operation, or selection of an extra operation in RTL.

In this case, the- instruction decoding fault ray be I R, I/My I /AI1,

Ij/Ik, Ij/IMj+LIk' I /I + Ik, I /I +I,, and so forth, where AI means part of

instruction I.

JL
• ,.. . ..- , .. : . .- - **-. -.- -.- *." '-. . '...*... " , , .- ,- , .'.--. .. - . . - . - -

6

In fact, for most existing off-the-shelf microprocessorb, the register deccding

faults can be considered as In~truction d,;coding faults, i.e. P/¢cI/ 4%

R/R'CI / R/R+R'cI./I.+I, where I, I are transfer instructions among
ks j 'k' ' j /Ij Ik, jbr 11

registers. For example, let I. be R.fcnorv, Ik be R enory, then fault

R/F Efault Ij/Ik . In addition, the control faults also include instruction

execution sequence faults, condition faults and so on.

From the above observation, we assert that it is appropriate to represent

the control faults at the RTL level. Therefore, we will define the above

control faults at such a level. Let f denote D4-f(SI,S 2,...), which is an operation

on the instruction-under-test, and -h{f), where {f} is the set of RTL operations

of a microprocessor. Let f' denote D' f'(SI, which is an unexpected

(faulty) operations and f'c{f}.

We now define three classes (i.e. nine subclasses Fl, F2, ... , Tg) of

control faults as follows:

(1) f/4- No cperation is executed.

Fl. f4~

(2) f/f' - Instead of perfoning the operation f, another operation f' is

executed. It contains two subclasses of faults.

F2. 6f/f': Pere 6 means that the destination registers D and D' are

different and the fault is f/f'.

F3. of/f': O denotes that registers D and D' are the same.

(3) f/f+f' - In addition to operation f, another operation f' is also

a' executed. It can be subdivided as follows.

(3a) Register D and D' are different.

"4. f/f4f': The source register list of f and f' does not include

D' and D resrectively. We are not concerned with the execution order

.....

7

of f and f.

F5. Cf/f'f: The source register list of f includes D', f' Is executed

before pcrformirg operation f; i.e. the execution order is

2. D'-f' (SY, S',...)

2. D- f (SI,£E2,...,sD'*)

where register without * denotes its content befcre executing the operation,

register with * denotes its content after exEcuting the operation.

F6. 6f/ff' : The source register list of f' includes D and the execution

order is

1. D-f (SI1 S2 ,...

2. D'-f' ('

(3b) Registers D and D' are the save, i.e. D'-D. When the source register

list cf f and fV doeas not include D' and D respectively, if the executicn order

is f'f, the fault dces not affect the execution of f. If the execution order is

f fl, it is the saiae as the case vith the fault cf/f'.

F7. of/f'f: The source register list of f includes D, and the execution

order is

"1'1. D*-f' S , P.)1.

2. D-f (S S2,...,D *)

F8. of/ff': The sourcc register list of f' includes D and the execution

order is

1. D-f (s19s2,...)

2. D4-f'

Fg. ef/ff ': Both f Lnd f' are executed at the seise tire.

D4-f (S 1S2, ..-)

"l'S2'"'")

where L denotes logical AN'D or OP function. In this case, the final content of

the destination D is the resvlt of the composite value (i.e. the result of the

...-

AND or OR function) of f and V.

Note that the above control faults car, occur at any place in an instruction

execution sequencc. This control fault modcl can cover register decoding faults,

instruction eecoding faults (including partially instruction execution),

instruction executicn sequence faults, etc., since any control fzult can ahlys

be defired as rissing, changing, or extra RTL opeations and will cause reg~stcrs

to have vrong contents.

..

.'...

a. 9

III; REQUI *F.NiS FOR TESTING CONTOL FAULTS

Our purpose is to test the execution of microprocessor instructioi.s.

Therefore, the objective of test pattern generation is to find the initial

-w. data in registers (test data) nceded for testing functions of an Instructior

and also the sequence of instructions. This test data must satisfy certain

requirements. From the control fault rcdel given in Section II, we can obtain

various requirements for testing control faults.

Let us establish the following notation. For a fault-free operation f,

we have

Vi the xalue of register i.

VS. the value of the operand in source register Si .

VD = the value of the operand in destivation register D.

VD* the value of destiration register D storing the result of

operation f.

For a faulty operation fV, we obtain VS!, VL1 and VD'* instead.

Theorem 1. Control faults T/, T/T' and T/I+T' can be detected if the data

values of registers satisfy the following requirements:

QTTL V. V i Vj

QTT2. V i L V i V, i j

Proof. We shall prove this theorcm by considcring the nine fault classcs

defined in Section II.

() For fault Fl (T/) ane F2 (6T/T'), in order to verify transfer

operation T, one needs VS I'D.

(ii) For fault F3 (OT/T'), the results of T and T' should be different,

i.e. VD VD'*. To obtain this result, we must have VS i VS'.

(iii) For fault F4 (6T/T+T') and F5 (6T/T'T), we need only to detcct thr

extra operation T'. Therefore, VS' I VD'.

• y~ .. ,./ .. %-, .,.;$,.,, ..- .. . " . ' ' ,-,- . ., - , ., - .. • - .. , , - .-

-~~~~~~~~~Z V" -Z .. rm. - . Jn v rv-7. ar , . w.- -

1)

(iv) rault F6 (6T/TT') means that transfe r operation D<S is pererned

first, ther. 1)'D4-* In order to dctect the extra operation T', one rjees

Vs V' NT'.

(v) rult F7 (cT/T'T) yields DP-S' follovcd by IYD.':. Therefore, ve obtein

the requirernt VS' V VD.

(vi) For fault F8 (aT/TT'), we have DIS, then D-D '. This fault does net

affect operaticn T. in order to verify T, we need VS J VD.

The abo,'e six requirements belong to QT7I.

* (vii) For fault F9 (UT/TLT'), the composite value of both results of T and

T' should be different fror the correct result of T. i.e. VSLVS' VS which

belongs to QTT2.

o.E.D.

Theorem 2. Control faults T/A' end T/T+A' can be detected if the data values

of registers satisfy the follouwing raquirements:

* QTAl. V V. , j
i '

" QTA2. f vs

QTA3. fA # VV

QTA4. VSLf' # VS

where f' is the result of operaticn of class A, i.e. fA ft (VS' VS'"...).
A A A 1' d

?roof. The proof is simrailar to the proof for Theoram 1. Since A' instead

of T' is performed, we can change VS' to f' in the requirements, (ii), (iii),

(v) and (vii) in the Proof for Theorem 1 to obtain the corresponding

requLre ents foi Theoren 2.

(i) For F2 (6T/A'), VS # VD, (QTAl).

(ii) For F13 (OT/A'), VS # f , (QTA2).

(iii) Fcr F4 (6T/I+A') and F5 (6T/A'T), fA VD', (QT"3).

(iv) For 16 (6T1I/A'), it means that D-S first, then D'-f' (' ' '

AErr."'

11

We need .' (VSlVS2' ...,VS) i VD'. Since VS can be selected as any initial

data valuc, it can bc considered as one of several source operauds. Therefore,
we can rc.:r _te .,(7 V7D'c' VS ,VS) # VD' as f VD', (QTA3).

(v) For r7 (cr/A'T), fA i V, (QTA3).

(Vi) For F8 (C-1I/TL'), it im~plies 1)4-3 followed by D<-f~ (S"~S *.*)

This requires VS -i f (VS,VS',..., VS). Here VS can be considered as a
A

destinaticn opcrav d VD'. So we rewrite the inequality as VD' f', (QTA3).

AA
(vii) Fo 9 (o7/ TLA'),V f'Q.D

, fA" = VS (QTA4). QED

Theorcr 3. Control faults A/, A/T' and A/A+T' can be detected If the data

valued of registers satisfy the following inequalities.

QATI. fA VD

QAT2. f I VS'
A

QAT3. V. r . , i j

QAT4. fA i VD '

QATS. fA (VS') f f(VD)A

QLT6. f L Vq' - f
A rA

where fA = fA (VSI'S2'''')' fA(r) fA(VSl3VS2
',..',D) ' fA(VS')

%f (VS XS
IA (Vl VS2' .. ""VS '

Proof. Since arithmatical and logical operations instead of transfer

operations are considered here, we can change VS to fA in the cases (i), (ii),

(iv), (vi) and (vii) of Theorem 1.

(i) For Y! and F2, fA # VD, (QATI).

(Ii) For F3, f I VS', (QAT2).
A

(iii) For F4 and FS, VSt I VD', (QAT3).

(iv) For F6, F A VD', (QAT4).

(v) F7 (tA/T'A) means that D+S-' followed by Df S2 D*) which yields

fA (rSl, VS2,...,VSI). When there is no fault, fA(VSI, VS2 ,...,VD) is obtained.
A * * - . . *.*%.-.*1 - -* -. *1~ ~ .-

"::"i - *'" - " *""-:'' - , ---- :""''' -. '* * . ., ' ," "" '""" - ": ''".';..'-:. .. : - .'. o ..*"-"" ; . .' --, .'.-,i. . ' "' , - "-..'-. . ." ' ,. '- ". . -.- .-- ".-' '.- . , , - - ' , .. ' ,- ,

12

Thus the condition for detecting this fault is fA (VS1 VS2,VSI)

' fA(VSl,VS 2,... ,V). (QTA5).

(vi) For P8, fA j VD, (QTA1).

(vii) For F9, fA L VS' fA' (QTA6). Q.E.D.

Theorem 4. Control faults A/A' and A/A+A' can be detected if the data values of

registe'rs satisfy the following inequalities.

QAA1. fA j VD

QAA2. fA i f

QAA3. V i VD'

QAA4. f(fAA I'

QAA5. fA (fT fA (VD)

QA A6. fV (f) f
A A A

QAA7. fA L fA A

where fI , f) f ..

= V1(V S2 , WA A A VVS2, f'A)

Proof. For the same reason, we may change VS to fA' and VS' to fV for

cases (i) to (iii) and (vii) in Theorem I to obtain QAA1 to QAA3 and QAA7

respectively. In addition, since the results of A and A' may affect each other,

we can obtain QAA4 to QAA6. Q.E.D.

Note that for requirement QAA7, if operation f and f' of class A are
A A

e5'ecuted in the sane unit (e.g. ALU), then both results of fA and f; can no

longer be considered as obtained separately. Instead, (.AA7 ray be considered

as a data ranipulation fault (f A)/(fA)'.

A:A

13

IV. WRITE AID READ SEQUFNCES

As a microprocessor is one type of sequential machine and all internal

registers are memory elements of the sequential machine, the content of registers

represents the state of the sequential machine. Therefore, the following

procedure is utilized for testing microprocessors.

1. Initialization of state of registers.

2. Execution of the instruction-under-test.

3. Read the state of registers.

In fact, Steps 1 and 3 consist of write and read register sequences respectively.

* Obviously, if we can guarantee the correctness of Steps 1 and 3 first, then

the testing problem will be simplified.

The testing approach used here is a kind of open loop testing [6]. It

implies the use of a test equipment vhich provides the stimuli to the micro-

processor and observes the responses from the microprocessor.

Now let us discuss urite and read sequences which are used for writing

and reading the register states of a microprocessor. They consist of several

basic instructions, called the kernel of microprocessor. These instructions

of the kernel can be carried out by a sequential machine, therefore, we can

use a checking experiment to verify the kernel.

A. The kernel of microprocessor

Definition 1. Kernel instruction set - A small subset of instructions of a

microprocessor which can be used for constituting the write and read register

sequences.

Definition 2. Register set - All internal registcrs of a microprocessor from the

view of the architecture or prograrz-Ang.

Definition 3. Kernel state - The register state, i.e. certain set of data values

of the registers.

- V '.''

5', i . i--i-'. , l -i- - .l- i- - . ,
•
7.'1.-i .i.. -li . l- 'l'-l .',. l • ,- -•'l.i..-. '.....-.-".-.-.-.-.. . .-..,..-. .. ,... .

14

Definition 4. Kernel input - The write sequence for writing a set of data into

the registers, or the read sequence for reading out the contents of the registers.

Definition 5. Kernel output - The set of data values of the registers which are

read out by the read sequence.

B. Kernel instruction set

There exists many choices for the kernel instruction set. In order to

keep the kerrel stall, the following requirements should be satisfied.

1. The number of instructions in the kernel instruction set should be

small.

2. Functions of each kernel instruction should be as simple as possible.

For instance, a kernel instruction contains rmainly transfer type of operations,

or small number of RTL operations.

3. In order to simplify addressing, the priority order of choosing the

addressing mode of an instruction is as follows.

F For write register instructions: Irediate, Direct, Indirect.

• For read register instructions: Direct, Indirect.

For the existing off-the-shelf r-icroprocessors, most registers can be

written into or read from directly. These registers are called direct access

registers. Others are indirect access registers which can be accessed through

the direct access registers in certain order by using transfer instruction

at-ong registers.

C. Kernel state

In order to simplify the testing, during the checking experiment, we only

use a few states for the good knrnel, i.e. we define several sets of data value

for the registers. Therefore, we should cLoose the data values (test data)

such that they can cover as rany faults as possible.

%7 A

" 15

V. VERIFYING WRITE AND READ SEQUENCES

We use the checking experiment to verify the kernel of a microprocessor.

The r in task is to decide how many states of the kernel and what test data we

use.

Abraha. and Parker [6] use the k-out-of-m codes for their "register read

test" procedure, where m is the width of a code word (I.e. the length of register),

and k is the number of l's in the code word. Ls we will see, this type of code

is powerful since it can be used as test data to cover most control faults by

using fewer data. We will use the k-out-of-m codes for verifying the write

and read sequences as well as for testing control faults. The k-out-of-m codes

can also detect stuck-at type faults, but do not guarantee to cover all data

processing faults.

To sirplify the testing, we shall only use transfer operations of the kernel

instructions in write and read sequences. Therefore, we only need to consider

the requirements of Theorems I and 2.

A. QTTI, QTAI and QTT2

The k-out-of-M codes used as test data can satisfy requirements QTT1,

QTA1 and QTT2 (Vi ' Vj and Vi L V. # Vi). This is because in k-out-of-m

codes, all code words are distinct and the A-_ND(OR) operation of any two code

words will reduce (increase) the number of l's in the code word, thereby

different from both original code words.

B. QTA2

During the checking experirent for the .ernel, there exists an input leaving

the kernel state unchanged. Therefore, transfer operation (in write sequence)

D4-S implies X-D = VS, then the requirer-nt QTA2, fA' VS, becor-es fA' X D This

is for detecting fault OT/A', here D and D' are the sare register. Therefore,

..

'wh,.16

QTA2 is changed to fA' %)' which belongs to QTA3.

C. QTA3

The requirement QTA3, f'(VS',VS',...) j VD', is for detecting an extra

operation. We list the restrictions of operands (test data) for detecting

operation of class A in Table 2.

Extra Operations Restrictions of Operands

BIT SET (
BIT RESET

BIT COIPLEMENT No

INCREHENT No

DECRE-MENT No

DECII'ML ADJUST

SHil1 0 (all Os), 1 (all is)

ROTATE 1 0,1
COPLEI,[ENT No

NEGATE No

CLEAR 0

ADDITION 0

ADI7ION 1vrITH CARRY # 0, -1

SUBTF.ACTION 10

SUB:RACTION ,ITH BORROW 0
* k-out-of-m codes

OR k-out-of-m codes

XOR k-out-cf-m codes

EXTEND SIGN 0 0, 1

ADDITION, D*-S1 + S2 the least significant bit LSE =1

AL- :ION, D-D + S + S 10; vs, + VS1 1 0
1 2 - 1 2

LD7ION, D-S 1 + S2 + S3

.. LTIPLY 0 0, 1

DIVIDE of, 1
BIT SIEST

MOTARE()

Modifying flags

h able 2. Restrictions of operands for detecting faulty
aritlx.etic or logical operations

... - _ _ t, ,," ".'. -j .. . - - , , '- -,'..'..' ...,..': - , , ., .. -. ,- ,.... ,-" -'

17

If we use two tests in which the source operands are complements of

each other, then one of the tests can detect the faulty operation.

© These operations only set or reset the flags. Ve use two tests with

the identical source operands and two sets of flags which are complements to each

other. The faulty will change one of the flags.

The execution of DECIMAL ADJUST (to add certain values) depends on the

value of source operand and the flags. We can use either method in case 1

or either method in case 2 to detect the operation.

Operation D+-S1 + S2 + S3 is only used for memory address addition.

Here D means external address bus. In this case, the unexpected operation

does not affect the write and read registers. Hence it needs not to be

considered for verifying the kernel.

(During the checking experiment for the kernel, if we have considered

the main operations in arithmetic and logical instructions as the unexpected

operation, then we need not consider modifying flags which are auxiliary

operations.

For other operations, the restrictions are obvious. For example,

ADDITION IWITH CARRY, D'-D' + S' + CARRY , if CARRY - 0 with the restriction
VS' # 0 or CARRY' = I with the restriction is VS' 1 -1, then VD'* I '.

Since we use k-out-of-m codes as operands, these restrictions can be satisfied.

- For operation D'-D' + S' + S' , since the negative value of any k-out-of-m
1 2

code word will not be any k-out-of-m code, i.e. VS + VS' V 0; so VD' + VS' + VS'

I VD'. For operation D'-S' + S , we can divide the k-out-of-n codes into two

groups with different LSB (Least Significant Bit). These two groups complement

each other. The group with the restriction LSB I 1 will be used for testing.

.4

For operation ROTATE, the restriction is for the case of the odd number of

shifted bits. Otherwise, we need otherrestriction (e.g. using subset of

k-out-of-n codes as operands).

D. QTA4

The checking experiment does not guarantee requirement QTA4, VS L F y VS.
A

For exanple, for the normal transfer operation T, D-S, with VS = 0101, ID = 0110

(using 2-out-of-4 codes), if there exists a fault OT/TLA t and the extra

operation A' is INCRaENT, D+-D+I, then f' m ID + I = 0111. If L is an AND function,
A

then VS L f' = VS. Thus QTA4 cannot be satisfied. Therefore, we need another
A

test procedure to remedy this. The remedy is to change the value of S to 1

or 0 depending upon L being AND or OR respectively. From the above example,

we see that if L is an AND function, let VS 1 then QTA4 becomes fA' 1 which

can be satisfied. Similarly, if L is an OR function, let VS = 0 and QTA4 changes

to A 0.

Now let us check this remedy method for all operations of class A. Note

that we only change the value of S in operation D+-S, and D' in operation A' can

be substituted by D.

(i) For class Al, D'-f'(D). If :e use k-out-of-n codes, the new
A

recuirentnt QTA4', fA _i (0), depending on L, can be satisfied except the

operation CLEAR with L being OR. But in this case, the result of fA is always

0 which does not affect the operation D4-S.

(I) For class A2, D+f (D,S'). No matter S' is the same register as S

or not, QTAL' is true except the following case: when S' and S are the same

rcgister, tien for QTA4', f' 1 1 (f' is operation OR and L is AYD) and f 0

(f' is operation APD and L is OR) cannot be met. But in this case, if S' and
A

S are the saze, VSLf' is always the same as VS, the fault does not affect D-S,
A

i.e. VSL(Vt,' S) = VS and VSV(VDAVS) VS for any operands D and S.

|'3.%

19

(iD) For the EXTEND SIGN operation, D'-fA'(S'), the result of fA is 0 or 1.

Similarly with case (1), either QTA4 can be met or the fault does not affect

operation T.

(iv) For classes A3 and AF, QTA4 can be satisfied. For the same

reason as QTA3, we need to consider neither modifying flags operation nor

D4-S 1 + S2 + S3
'1 2 3

(v) For MULTIPLY and DIVIDE, since the execution period of these operations

generally is longer than that of transfer operations, fault of/fLf' cannot exist

and we do not consider QTA4.

In sunary, during the checking experiment we only need three sets of

test data for internal registers. Let n be the number of the internal register,

r be the length of registers. Suppose that m is even. Let V denote a complete
set of k-out-of-m code words. Usually, k = r2 lVI

set 2 _- will be the maximum

number of distinct codes. We divide them into two groups, V and V with different

LSB. These two groups are complementary to each other. Note that for most

ricroprocessors, m is even, and IV[> 2n.

Let {a} = {al,a2,...,an, {do = a1v2,..., }, {a) and {a} belongs to

V and V respectively. We now construct four sets of data as follows.-0

Flag register Other registers

aa1 ~2 a , ... 9an

a1 a 2 a3, ... , an

al a2, (.Y3 ' "" a.

In order to satisfy requirement QTA3, %e can choose any three sets of data as

the initial values of registers (test data). In fact, one needs a few more

data as external bus inputs during testing. Thcrefore, the final number of code

[_4.

20

words in {a) and {cI) is larger than n.

It should be pointed out that the program counter (PC) is easy to test.

We can put a direct addressing branch instruction at the end of a write sequence.

This instruction stores a particular value into PC, then the content of PC is

checked at the beginning of the read sequence by observing the address bus.

Now we will derive the checking sequence for the kernel. As we mentioned

before, we only use three sets of test data for the kernel, namely a, b and c.

First of all, just like a sequential machine we have to obtain a flow table of

the kernel. W'e consider two cases.

Case 1. For a microprocessor without indirect access registers, we obtain

the following flow table.

W W W Ra' ab C

A QA ®B C 0 A,a

B ®B ®C OB,b

C GA B ®C C, c

Case 2. For a microprocessor with indirect access registers, we obtain

the following table.

W W Ra b W

A () A © B 0 C O A*,a

B A @ B A c 6 B*,b

C A @ B 3 C @ C*,c

A* A (B C C1, A*,a*

B* (®) A 0 B 0 C B*,b*
c* @ A B @ C c*

• *.****. *;,' -. *.*~ '' ". . -.-i .'. . .. -~ 2 . 2L ' V)J "> ", .'.,% - -

21

where Wa, Wb Wc- write sequences for writing a, b and c respectively.

R - read sequence.

A, B, C, A*, B*, C* - Kernel states. A, B and C are the states after

applying the corresponding write sequences W a, Wb c. A*, B* and C* are the

states after applying read sequence R.

a, b, c, a*, b*, c* - Kernel output sequences produced by read sequence R

for states A, B, C, A*, B*, C* respectively.

(denote the state transition i.

Since we only use three sets of test data, the number of states of the kernel is

constant. It means that the above flow tables are independent of microprocessors.

Therefore, we can easily obtain the checking sequences with the same form.

There are three requirements to derive a checking sequence [12,13].

1. Initialization of the machine (kernel) state using sychronizing

sequence or homing sequence.

2. Identify all machine states using distinguishing sequence.

3. Verify each transition using distinguishing sequence.

For our kernel, there exists sychronizing sequences Wa or Wb or Wc and

distinguishing sequence R. Therefore, we can easily eerive checking sequences

as follows.

Checking Sequence 1 (for case 1)

Initialization

/ Identify all states

W R R b R R W R R W R W W W R Wb R HR W
Verifya ala sac t ic (i e. a

Verify all state transitions (i.e. next states).

22

Checking sequence 2 (for case 2)

Initialization

Identify all states

a R R R WR R R W c R R W a W c W c b R " W a R Wa

4 44 T 1 .
Verify all state transitions (i.e. next states)

aWR W R W W R W c a W c b R b a

%-"' \.d -S

0 0 0 0

Finally, we can obtain two test procedures for verifying the write and read

sequences as follows.

Procedure 1: Checking experiment

1. If a microprocessor does not have indirect access registers, ve use

checking sequence 1.

2. If a microprocessor has indirect access registers, we use checking

sequence 2.

Procedure 2: Remedy testing

For each of the three sets of register values a, b and c, do the following

for each register.

1. Initialization of all registers.

2. Write 1 or 0 into the given register depending on the circuit

itplementation.

3. Read the given register.

Therefore, from the previous discussion In this section, we obtain the following

theorem.

Theorem 5. Procedures I and 2 can verify vrIte and rvad sequences, 2r.d after

that the registers of a microprocessor can be Initinli-ed to any values.

L%
:e

23

VI. TESTING CONTROL FAULTS

During the verification of the correctness of write and read sequences,

we are only concerned with certain transfer operations (not all RTL operations)

in the kernel instructions. Therefore, when we test instruction decoding and

other control faults, we need to test all instructions included in the kernel.

Procedure 3. Testing instruction decoding and other control faults

For each instruction, do the following steps,

1. Initialize register state using any particular initial values

(test data).

2. Execute the instruction instruction-under test.

3. Read register state.

Note that we should first try to use three sets of data values a, b and c

at Step 1.

Generally we need several tests for each instruction to detect the

instruction decoding and other control faults. Obviously, the lower bound

of the number of tests using Procedure 3 for each instruction is two. This

is because any kind of microprocessors has several pairs of conditional branch

• .instructions based on two different values for the same condition source.

Therefore, when any instruction is utder test, in order to detect an unexpected

branch instruction due to a fault, we need at least two test patterns.

The upper bound on the test for each instruction is dependent upon the

microprocessor-under-test. We can roughly estimate the order of tests for

detecting instruction decoding faults. We consider nI instructions to be

tested, assume that each instruction corresponds to an operation, class T or

class A, used for distinguishing instructions from each other. Let nIT and

n denote the number of instructions which have operations class T and1A

. ...":'i......." ""

24

class A respectively, i.e. nI - nIT +lIA'

A. Testing instruction class T

1. The case of Theorem 1

Since for some condition branch instructions, their operations belong to

class T, and they are condition transfer operations. In order to detect this

unexpected operation T', two tests, in which test data are complement to each

other, are sufficient.

2. The case of Theorem 2

First of all, we use three sets of initial values a, b and c for covering

the requirements QTA1 and QTA3. In order to satisfy QTA2 and QTA4, we can

modify a, b and c separately as new test data. As we have discussed in

Section V, if the instruction-under-test has a transfer operation D-S, we can

change VS in original data a, b and c to VD, then QTA2 becomes QTA3 which can

be satisfied. Similarly, we can change VS to 1 (or 0) to satisfy QTA4. Here

we need nine tests altogether. Thus, the order of the number of tests for

testing instruction class T is 0(n IT).

B. Testing instruction class A

1. The case of Theorem 3

Test data a, b and c can cover QATl and QAT3. Similarly, in order to

satisfy QAT2, QAT4, QAT5 and QAT6, we can modify a, b and c in turn. First,

we change VS' and VD' to VD for covering QAT2 and QAT4 respectively. These

changes are done for each register, so it needs 3n tests, where n is the nurber

of registers. Then we change VS' to a particular value for covering QAT5 and

QAT6 separately. It needs 6n tests. So the total number of tests for each

instruction in this class will be 9n+3.

2. The case of Theorem 4

We need three tests using a, b and c for covering QAA1 and QAA2.

25

V " Then we attempt to find five particular tests to satisfy QAA3 through QAA7 for

each unexpected operation A'. So the number of tests for each instruction in

this class will be 3 + 5 (n -1) 5 nIA -2.
IA I

Therefore, the order of the nurber of tests for testing instruction class A

is 0 (n.n +A).

.,

IA 'I

%1- '0 -

26

VII. CONCLUSION

In this paper, we presented three test procedures to verify the write

and read sequences and to test control faults at the RTL level.

A control fault model is defined at the RTL level instead of the

instruction level. This allows us to model the fault more accurately.

Based on the control fault modUl, we consider the write and read

register sequence functions as the kernel of a microprocessor independent of

microprocessors. The similarity between the kernel of a microprocessor and a

.* sequential machine allows us to obtain the checking sequences to verify the

kernel. Therefore, testing of microprocessors can be simplified.

We mainly use k-out-of-m codes as test data which can cover more control

faults. Therefore, the number of test patterns can be reduced.

Further work includes the enumeration of the control faults at the RTL

level for the generation of tests for covering all possible conti:ol faults

in a microprocessor.

ACKNOWLEDGEMEN

The authors thank Dr. K.K. Saluja for his helpful comments and

suggestions on this paper.

26

-VII. CONCLUSION

In this paper, we presented three test procedures to verify the write

and read sequences and to test control faults at the RTL level.

-. -A control fault model is defined at the RTL level instead of the

instruction level. This allows us to model the fault more accurately.

Based on the control fault modbl, we consider the write and read

register sequence functions as the kernel of a microprocessor independent of

microprocessors. The similarity between the kernel of a microprocessor and a

sequential machine allows us to obtain the checking sequences to verify the

kernel. Therefore, testing of microprocessors can be simplified.

We mainly use k-out-of-m codes as test data which can cover more control

faults. Therefore, the number of test patterns can be reduced.

Further work includes the enumeration of the control faults at the RTL

level for the generation of tests for covering all possible control faults

in a microprocessor.

ACKNOWLEDGEMENT

The authors thank Dr. K.K. Saluja for his helpful comments and

suggestions on this paper.

-.

-l

. .

23

V1. TESTING CONTROL FAULTS

During the verification of the correctness of write and read sequences,

we are only concerned with certain transfer operations (not all RTL operations)

in the kernel instructions. Therefore, when we test instruction decoding and

other control faults, we need to test all instructions included in the kernel.

Procedure 3. Testing instruction decoding and other control faults

For each instruction, do the following steps,

1. Initialize register state using any particular initial values

(test data).

2. Execute the instruction instruction-under test.

3. Read register state.

Note that we should first try to use three sets of data values a, b and c

at Step 1.

Generally we need several tests for each instruction to detect the

". instruction decoding and other control faults. Obviously, the lower bound

*of the number of tests using Procedure 3 for each instruction is two. This

is because any kind of microprocessors has several pairs of conditional branch

instructions based on two different values for the same condition source.

Therefore, when any instruction is under test, in order to detect an unexpected

branch instruction due to a fault, we need at least two test patterns.

The upper bound on the test for each instruction is dependent upon the

microprocessor-under-test. We can roughly estimate the order of tests for

detecting instruction decoding faults. We consider nI instructions to be

tested, assuce that each instruction corresponds to an operation, class T or

class A, used for distinguishing instructions from each other. Let nIT and

nLA denote the number of instructions which have operations class T and

,,-,-./ ,.;.,; .,. , . .,: ,. ,. -. -.. .. . ° . .- - *...,
i l i i ;, * * * * * . *,;l : ° - ,:-, .: ' : C,,,;,: .: . -.- ::: -- :: -.... _.----. :

24

class A respectively, i.e. nI ' nIT 'IA-

A. Testing instruction class T

1. The case of Theorem 1

Since for some condition branch instructions, their operations belong to

class T, and they are condition transfer operations. In order to detect this

unexpected operation Tt, two tests, in which test data are complement to each

other, are sufficient.

2. The case of Theorem 2

First of all, we use three sets of initial values a, b and c for covering

the requirements QTA1 and QTA3. In order to satisfy QTA2 and QTA4, we can

modify a, b and c separately as new test data. As we have discussed in

Section V, if the instruction-under-test has a transfer operation D-S, we can

change VS in original data a, b and c to VD, then QTA2 becomes QTA3 which can

be satisfied. Similarly, we can change VS to 1 (or 0) to satisfy QTA4. Here

we need nine tests altogether. Thus, the order of the number of tests for

testing instruction class T is O(nIT).

B. Testing instruction class A

1. The case of Theorem 3

Test data a, b and c can cover QAT1 and QAT3. Similarly, in order to

satisfy QAT2, QAT4, QAT5 and QAT6, we can modify a, b and c in turn. First,

we change VS' and VD' to VD for covering QAT2 and QAT4 respectively. These

changes are done for each register, so it needs 3n tests, where n is the nurber

of registers. Then we change VS' to a particular value for covering QAT5 and

QAT6 separately. It needs 6n tests. So the total number of tests for each

instruction in this class will be 9n+3.

2. The case of Theorem 4

We need three tests using a, b and c for covering QAA1 and QAA2.

'. - -- ,- . . . , .. . - . - . - - , , ,,

25

Then we attempt to find five particular tests to satisfy QAA3 through QAA7 for

each unexpected operation A'. So the number of tests for each instruction in

this class will be 3 + 5 (nIA -1) - 5 nIA -2.

Therefore, the order of the number of tests for testing instruction class A

is 0 (n.n +'n .

.AA

'.4

k°

V '" ' . ' ' . .- " ., ' ' .- ' -- . ' ., ... " .. ' .- , ., " - , . ..- " ., - ,. .- -. . '' : . ''

LA " ! ' • " , . .. ' , . . ,,..i ". - ,:.' .{ J. . *.'

26

VII. CONCLUSION

In this paper, we presented three test procedures to verify the write

and read sequences and to test control faults at the RTL level.

A control fault model is defined at the RTL level instead of the

instruction level. This allows us to model the fault more accurately.

Based on the control fault modbl, we consider the write and read

register sequence functions as the kernel of a microprocessor independent of

microprocessors. The similarity between the kernel of a microprocessor and a

sequential machine allows us to obtain the checking sequences to verify the

kernel. Therefore, testing of microprocessors can be simplified.

We mainly use k-out-of-, codes as test data which can cover more control

faults. Therefore, the number of test patterns can be reduced.

Further work includes the enumeration of the control faults at the RTL

level for the generation of tests for covering all possible control faults

in a microprocessor.

ACKNOWLEDGEMENT

The authors thank Dr. K.K. Saluja for his helpful comments and

suggestions on this paper.

...

27

REFERENCES

[1] A.C.L. Chiang and R. McCaskill, "Two New Approaches Simplify Testing of
Microprocessors", Electronics, 22 Jan. 1976, p. 100.

[2] S.M. Thatte and J.A. Abraham, "Methodology for Functional Level Testing
of Hicroprocessors", 8th International Symposiui on Fault-Tclerant
Computing, Tculouse, France, June 1978, pp. 90-95.

13] S.M. Thatte and J.A. Abraham, "Test Generation for Microprocessors",
IEEE Trans. on Computers, C-29, No. 6, June 1980, pp. 429-441.

[4) S.M. Thatte, "Test Generation for Microprocessors", Coordinated Science
Laboratory Report R-842, University of Illinois at Urbana-Champaign,
May 1979.

[5] J.A. Abraham and S.M. Thatte, "Fault Coverage of Testing Program for a
Microprocessor", 1979 Test Conference, Oct. 1979, pp. 18-22.

[6] J.A. Abraham and K.P. Parker, "Practical Microprocessor Testing: Open and
Closed Loop Approaches", IEEE Ccmpcon, Spring 1981, pp. 308-311.

[7] Y. Min and S.Y.H. Su, "Testing Functional Faults in VLSI", 19th Design
Automation Conference, Los Vegas, Nevada, 1982, pp. 384-392.

[8] K.K. Saluja, L. Shen and S.Y.E. Su, "A Simplified Algorithi for Testing
Microprocessors", 1983 Test Conference, Oct. 1983, pp. 668-675.

19] C. Robach and G. Saucier, "Microprocessor Functional Testing", 1980
Test Conference, Nov. 1980, pp. 433-443.

[10] M.A. Annaratone and M.G. Sami, "An Approach to Functional Testing of
Microprocessors:, 12th Internatioral SvrDosiu on Fault-Tolerant Computing,
Santa Monica, CA, June 1982, pp. 158-164.

111] B. Courtois, "Functional Testing of the Control Section of Integrated
Processing Units", RR No. 203, IMAG, Univ. of Grenoble, France, May 1980.

[12] F.C. Hennie, Finite-State Models for Logical Machines, John Wiley & Sons,
Inc., NY, 1968.

(13] A.D. Friedman and D. Menon, Fault Detection in Digital Circuits, Prentice-
Hall, NJ, 1971.

/.%

II r..T'r,,, L ~ 477. . t ,, ' .- T,"-: , ,::"- .. - ,:7 +, ,+,..., ,
"

., -_- " -", , _,,]

' FILMED

1-86

5' -. DTIC
, .=- * '. ' 4 4 4 44,M

'\4 4

